SML300HB12 ### Attributes: - -aerospace build standard - -high reliability - -lightweight - -metal matrix base plate - -AIN isolation - -trench gate igbts ## **Maximum rated values/Electrical Properties** | Collector-emitter Voltage | | ce | 1200 | V | |------------------------------------|-------------------------------------|----------------------|------------|--------------------| | DC Collector Current | Tc=70C, Tvj=175C
Tc=25C,Tvj=175C | I _c , nom | 300
440 | A | | Repetitive peak Collector Current | tp=1msec,Tc=80 \\ | $I_{\rm crm}$ | 600 | A | | Total Power Dissipation | Tc=25C | P_{tot} | 2380 | W | | Gate-emitter peak voltage | | V_{ges} | +/-20 | V | | DC Forward Diode
Current | <u></u> | $ m I_f$ | 300 | A | | Repetitive Peak
Forward Current | tp=1 msec | $ m I_{frm}$ | 600 | A | | I ² t value per diode | Vr=0V, tp=10msec,
Tvj=125C | I_{t}^{2} | 19000 | A ² sec | | Isolation voltage | RMS, 50Hz, t=1min | $V_{\rm isol}$ | 2500 | V | | Collector-emitter saturation voltage | Ic=300A,Vge=15V, Tc=25C
Ic=300A,Vge=15V,Tc=125C | V _{ce(sat)} | | 1.7
2.0 | 2.15 | V | |--------------------------------------|--|----------------------|-----|------------|------|----| | Gate Threshold voltage | Ic=4.8mA,Vce=Vge, Tvj=25C | Vge _(th) | 5.0 | 5.8 | 6.5 | V | | Input capacitance | f=1MHz,Tvj=25C,Vce=25V,
Vge=0V | Cies | | 21 | | nF | | Reverse transfer Capacitance | f=1MHz,Tvj=25C,Vce=25V,
Vge=0V | C_{res} | | 0.85 | | nF | | Collector emitter cut off current | Vce=1200V,Vge=0V,Tvj=25C | I_{ces} | | 1 | 5 | mA | | Gate emitter cut off current | Vce=0V,Vge=20V,Tvj=25C | I_{ges} | | | 400 | nA | Semelab Plc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders | Turn on delay time | Ic=300A, Vcc=600V
Vge=+/15V,Rg=2.4Ω,Tvj=25C
Vge=+/-15V,Rg=2.4Ω,Tvj=125C | $t_{ m d,on}$ | 250
300 | nsec
nsec
nsec | |--------------------------------|--|------------------|--------------|----------------------| | Rise time | Ic=300A, Vcc=600V
Vge=+/-15V,Rg=2.4Ω,Tvj=25C
Vge=+/-15V,Rg=2.4Ω,Tvj=125C | tr | 90
100 | nsec
nsec
nsec | | Turn off delay time | Ic=300A, Vcc=600V
Vge=+/-15V,Rg=2.4Ω,Tvj=25C
Vge=+/-15V,Rg=2.4Ω,Tvj=125C | ${ m t_{d,off}}$ | 550
650 | nsec
nsec
nsec | | Fall time | Ic=300A, Vcc=600V
Vge=+/-15V,Rg=2.4Ω,Tvj=25C
Vge=+/-15V,Rg=2.4Ω,Tvj=125C | t_{f} | 130
180 | nsec
nsec
nsec | | Turn on energy loss per pulse | Ic=300A,Vce=600V,Vge= -1,
Rge=2.4Ω,L=30nH Tvj=2.5C
di/dt=6000A/μsec | E _{on} | 17
25 | mJ
mJ | | Turn off energy loss per pulse | Ic=300A,Vcc=6c V,Vge=+/-15V
Rge=2.4Ω = 3c aH Tvj=25C
di/dt=4000A \ μ ec Tvi=125C | $E_{\rm off}$ | 29.5
44.0 | mJ
mJ | | SC Data | tp≤10μs c, Vge≤15V V/c=900V,
Vre _(ma/) =Vces-L/di/d | I_{sc} | 1200 | A | | Stray Module inductance | 1 6 | $L_{\sigma ce}$ | 30 | nН | | Terminal-chip rock tan e | 0 | R _c | 1.0 | mΩ | ### **Diode characteristics** | Forward voltage | Ic=300A,Vge=0V, Tc=25C
Ic=300A,Vge=0V, Tc=125C | $V_{\rm f}$ | 1.65
1.65 | 2.15 | V
V | |-------------------------------|---|------------------|--------------|------|----------| | Peak reverse recovery current | If=300A, -di/dt=6000A/μsec
Vce=300V,Vge=-15V,Tvj=25C
Vce=300V,Vge=-15V,Tvj=125C | I_{rm} | 210
270 | | A
A | | Recovered charge | If=300A, -di/dt=6000A/µsec
Vce=300V,Vge=-15V,Tvj=25C
Vce=300V,Vge=-15V,Tvj=125C | Qr | 30
56 | | μC
μC | | Reverse recovery energy | If=300A, -di/dt=6000A/μsec
Vce=300V,Vge=-15V,Tvj=25C
Vce=300V,Vge=-15V,Tvj=125C | E _{rec} | 14
26 | | mJ
mJ | Semelab PIc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders | Thermal Properties | | | Min | Typ | Max | | |-------------------------------------|---------------|-------------------------|-----|------|---------------|-----| | Thermal resistance junction to case | Igbt
Diode | $R_{ heta J ext{-}C}$ | | | 0.063
0.11 | K/W | | Thermal resistance case to heatsink | | $R_{\theta C ext{-hs}}$ | | 0.03 | | K/W | | Maximum junction temperature | | Tvj | | | 175 | С | | Maximum operating temperature | | Тор | -55 | | 175 | С | | Storage Temperature | | Tstg | -55 | 4 | 175 | С | Semelab Plc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders # output characteristic IGBT-inverter (typical) I_C = f (V_{CE}) T_{vj} = 125°C transfer characteristic IGBT (typical) I_C = f (V_{GE}) V_{CE} = 20 V Semelab Plc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders switching losses IGBT-inverter (typical) $E_{on} = f$ (I_C), $E_{off} = f$ (I_C) $V_{GE} = \pm 15$ V, $R_{Gon} = 2.4$ Ω , $R_{Goff} = 2.4$ Ω , $V_{CE} = 600$ V switching losse / IGST-/nverte E_{on} = f (R_G), E_{on} / f (X_G) V_{GE} = ±15 / I_C = 3/0 A, / CE Semelab Plc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders #### reverse bias safe operating area IGBT-inv. (RBSOA) $I_C = f(V_{CE})$ $V_{GE} = \pm 15 \text{ V}, R_{Goff} = 2.4 \Omega, T_{vj} = 125^{\circ}C$ # forward characteristic of diode inverter (typical) Semelab Plc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders Semelab PIc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders